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Abstract
Multimodal emotion recognition identifies human emotions from various data modalities like video, text, and audio. However,
we found that this task can be easily affected by noisy information that does not contain useful semantics and may occur
at different locations of a multimodal input sequence. To this end, we present a novel paradigm that attempts to extract
noise-resistant features in its pipeline and introduces a noise-aware learning scheme to effectively improve the robustness
of multimodal emotion understanding against noisy information. Our new pipeline, namely Noise-Resistant Multimodal
Transformer (NORM-TR), mainly introduces a Noise-Resistant Generic Feature (NRGF) extractor and a multimodal fusion
Transformer for themultimodal emotion recognition task. In particular, wemake theNRGF extractor learn to provide a generic
and disturbance-insensitive representation so that consistent andmeaningful semantics can be obtained. Furthermore,we apply
amultimodal fusionTransformer to incorporateMultimodal Features (MFs) ofmultimodal inputs (serving as the key andvalue)
based on their relations to theNRGF (serving as the query). Therefore, the possible insensitive but useful information of NRGF
could be complemented byMFs that contain more details, achieving more accurate emotion understanding while maintaining
robustness against noises. To train the NORM-TR properly, our proposed noise-aware learning scheme complements normal
emotion recognition losses by enhancing the learning against noises. Our learning scheme explicitly adds noises to either
all the modalities or a specific modality at random locations of a multimodal input sequence. We correspondingly introduce
two adversarial losses to encourage the NRGF extractor to learn to extract the NRGFs invariant to the added noises, thus
facilitating the NORM-TR to achieve more favorable multimodal emotion recognition performance. In practice, extensive
experiments can demonstrate the effectiveness of the NORM-TR and the noise-aware learning scheme for dealing with both
explicitly added noisy information and the normal multimodal sequence with implicit noises. On several popular multimodal
datasets (e.g., MOSI, MOSEI, IEMOCAP, and RML), our NORM-TR achieves state-of-the-art performance and outperforms
existing methods by a large margin, which demonstrates that the ability to resist noisy information in multimodal input is
important for effective emotion recognition.
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1 Introduction

An accurate understanding of human emotions is beneficial
for several applications, such as multimedia analysis, digital
entertainment, health monitoring, human-computer interac-
tion, etc (Shen et al., 2009; Beale & Peter, 2008; Qian et al.,
2019; D’Mello & Kory, 2015). Compared with traditional
emotion recognition,whichonlyuses a unimodal data source,
multimodal emotion recognition that exploits and explores
different data sources, such as visual, audio, and text, has
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shown significant advantages in improving the understand-
ing of emotions (Zadeh et al., 2017; Tsai et al., 2019; Lv et
al., 2021; Hazarika et al., 2020; Yuan et al., 2021), including
happiness, anger, disgust, fear, sadness, neutral, and surprise.

Recently, most existing multimodal emotion recognition
methods mainly focus on multimodal data fusion, includ-
ing tensor-based fusion methods (Liu et al., 2018; Zadeh
et al., 2017; Sahay et al., 2020; Yuan et al., 2021) and
attention-based fusion methods (Zhao et al., 2020; Huang et
al., 2020; Zhou et al., 2021). The tensor-based fusion meth-
ods aim to obtain a joint representation of data with different
modalities via multilinear function calculation. For exam-
ple, TFN (Liu et al., 2018) used Cartesian product operation
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Fig. 1 Our proposed multimodal emotion recognition methodology,
i.e., Noise-Resistant Modality Transformer (NORM-TR) (as shown in
b), compared to common multimodal fusion methodology (as shown
in a). Using multimodal input that may contain noisy information with
irrelevant useless semantics, existing multimodal emotion recognition
method that directly fuses Multimodal Features (MFs) can be easily
affected by the noises. Alternatively, we make our NORM-TR learn
to extract Noise-Resistant Generic Feature (NRGF) with the help of a
novel noise-aware learning scheme. Then, by using amultimodal fusion
Transformer tomakeMFs complement theNRGF,weobtainmuchmore
robust multimodal emotion recognition results with our NORM-TR

to calculate the relationship between different modalities
to obtain satisfactory performance. Since the computational
complexity of the Cartesian product increases dramatically
with the feature dimension and the number of modalities,
its performance easily suffers from degradation if not using
overwhelmingly large model capacities. LMF (Zadeh et al.,
2017) introduced low-rank matrix factorization operation
to reduce the computational cost. However, LMF tends to
reduce useful information, resulting in a decrease in model
performance. The attention-based fusion methods mainly
employ attention learning mechanisms to make multimodal
information interact with each other. For instance, Zhou
et al. (2021) introduced attention learning to automatically
calculate the importance weights of audio and video modal-
ities so that obtaining effective emotion-related information.
Zhao et al. (2020) proposed a new attention-based VAANET
that integrated spatial, channel-wise, and temporal atten-
tions for audio-video emotion recognition. Overall, although
attention-basedmethods achieve progresses byweighting the
importance of modalities for effective fusion, they may be
still affected by noises inherent within each modality with-
out explicitly depicting noisy information.

Despite current progress in fusion strategies, we argue
that alleviating the negative impacts of noisy information
is also important. More specifically, we observe that, in a
multimodal sequence, there could be plenty of information

that shows little relevance to emotion understanding, which
can be viewed as noisy information. For example, the back-
ground sounds in audio data are irrelevant to the human who
smiles in the corresponding video. As a result, modeling
the trivial information of these background sounds would
likely affect the multimodal fusion and the final understand-
ing performance. In our experiments, we can show that noisy
information greatly degrades emotion recognition accuracy,
which further implies that being insensitive to noises can be
beneficial for accurate emotion understanding. However, to
the best of our knowledge, current literature on multimodal
emotion understanding lacks sufficient study on noisy infor-
mation, thus still obtaining sub-optimal performance.

In light of the above issue, we propose a novel Noise-
Resistant Multimodal Transformer (NORM-TR) to address
the adverse effects of noisy information on multimodal
emotion recognition. The motivation of NORM-TR and
the comparison to existing fusion methods are shown in
Fig. 1. In general, we make the NORM-TR learn to extract
a Noise-Resistant Generic Feature (NRGF) and then apply
a Transformer (Vaswani et al., 2017) to incorporate Multi-
modal Features (MFs) extracted from the multimodal input
according to their relations to the NRGF, thus obtaining
more robust andmore accurate emotionunderstanding results
against noises. More specifically, we tend to formulate the
NRGF to be generic and insensitive to the disturbances
caused by noises. To obtain the NRGF, we employ an NRGF
extractor and make it learn to summarize meaningful seman-
tics from multimodal data. The extracted NRGF can provide
a robust representation against noisy information, which also
runs the risk of being insensitive to useful details for accu-
rate emotion recognition. Therefore, we further introduce a
multimodal fusion Transformer with NRGF serving as query
and MFs serving as key and value; therefore, the relations
between MFs and NRGF are reasoned, and the MFs can
complement NRGF, achieving robust and accurate emotion
recognition predictions.

To train the NORM-TR effectively, we first apply nor-
mal emotion recognition losses to make it learn to estimate
human emotions. Meanwhile, we further apply our proposed
noise-aware learning scheme to helpmake ourmodel become
robust against noises. Our noise-aware learning scheme
explicitly adds noises to the input and applies adversarial
losses to train the NRGF extractor in NORM-TR. Adding
explicit noises can provide definite information about when
noisy information occurs in the input, which can facilitate
the discriminators of the related adversarial losses to be able
to distinguish whether a feature contains noises. Specifically,
two manners of adding noisy information are involved: (1)
wemake the added noisy information appear in all themodal-
ities randomly, and (2) we add the noisy information to only
a specific modality at some random periods. Two adver-
sarial losses are introduced regarding both types of added
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noises, respectively. By fooling the discriminator that distin-
guishes the first type of added noises, we canmake theNRGF
extractor focus on more generic features against noises in
all the multimodal data. Similarly, fooling the discriminator
on the second type of added noises can make the extracted
NRGF more robust against noises in each specific modality.
Together with the emotion recognition loss, our proposed
noise-aware learning scheme helps obtain robust NRGF and
facilitates our NORM-TR model to achieve favorable multi-
modal emotion recognition performance.

In summary, the major contributions of the paper can be
described as:

• We present a novel comprehensive study on noisy
information for the multimodal emotion understanding
task. To achieve more robust emotion understanding
performance, we introduce the Noise-Resistant Multi-
modalTranslator (NORM-TR) to extractNoise-Resistant
Generic Features (NRGF) and significantly reduce the
negative impacts of noise in the multimodal data.

• Based on the NRGF, we devise a novel Transformer-
based end-to-end pipeline formultimodal emotion recog-
nition. Besides, a novel noise-aware learning scheme is
further designed to help optimize the NORM-TR appro-
priately.

• In practice, we demonstrate that the NORM-TR is effec-
tive in obtaining noise-invariant representations. Further-
more, our extensive experimental analysis of different
popular datasets also illustrates that the NORM-TR sig-
nificantly improves emotion recognition accuracy and
achieves state-of-the-art performance by using theNRGF
to alleviate the adverse impacts brought by noisy infor-
mation, indicating the importance of handling noisy
information.

2 RelatedWork

2.1 Multimodal Emotion Recognition

Multimodal emotion recognition aims to predict human emo-
tion from multiple modalities, such as video, audio, and
text. Most existing methods (Hazarika et al., 2020; Zhao
et al., 2020; Tsai et al., 2019; Yang et al., 2022; Sun et
al., 2020; Tsai et al., 2019) mainly focus on how to learn
and fuse multimodal emotion representations from data of
different modalities by considering the difference and con-
sistency of different modalities. For instance, Hazarika et
al. (2020) proposed a multimodal representation learning
method for modality-invariant and -specific subspace projec-
tion. Moreover, to learn the interactive information between
different modalities, recent increasingwork has concentrated
on multimodal fusion mechanisms, where many elaborate

multimodal fusion methods have been proposed. Tsai et al.
(2019) introducedMultimodal FactorizationMode (MFM) to
explore intra-modal and cross-modal interactions by decom-
posing the modality representation into two independent sets
of factors. Sun et al. (2020) proposed Interaction Canonical
CorrelationNetwork (ICCN) that usedCanonicalCorrelation
Analysis (CCA) to model the relationship between audio-
text and video-text modalities. Lv et al. (2021) proposed
the Progressive Modality Reinforcement (PMR) approach
to conduct multimodal fusion by considering the three-way
interactions across all the involved modalities.

Although progress, current methods rarely focus on the
noise problem in multimodal emotion recognition. Yuan et
al. (2021) also pointed out that multimodal data contain a
large amount of noise, such as missing data in some modal
sequences, which can greatly degrade the results of multi-
modal fusion methods. How to effectively reduce the noise
effect on multimodal data remains an open problem.

2.2 Adversarial Learning

Adversarial learning is widely used in domain adaptation
learning (Ganin & Lempitsky, 2015; Pei et al., 2018; Wang
et al., 2020; He et al., 2022) and cross-modal retrieval (Wang
et al., 2017; Li et al., 2018), etc. Recently, to improve the
effectiveness of fusion, adversarial learning is increasingly
used in multimodal emotion recognition by learning com-
mon subspace representations. Yang et al. (2022) employed
FDMER with adversarial learning to mine the commonality
and diversity of different modalities, achieving an impressive
performance for multimodal emotion recognition. Despite
the progress, FDMER did not consider the side effect of
noise on the robustness of the model. To address this lim-
itation, we propose the NORM-TR with a novel noise-aware
adversarial learning to extract Noise-Resistant Generic Fea-
tures (NRGF), thereby greatly reducing the negative impact
of noisy information and improving the robustness of the
multimodal fusion.

2.3 Transformer

Transformer is an attention-based building block formachine
translation introduced by Vaswani et al. (2017). By aggre-
gating data from the whole sequence, Transformer can learn
the relationships between tokens scanned over time, replac-
ing RNNs for a variety of tasks, such as natural language
processing (Kenton & Toutanova, 2019; Ding et al., 2021),
computer vision (Zhang et al., 2022; Liu et al., 2021),
as well multimodal emotion recognition (Hazarika et al.,
2020; Liang et al., 2020; Tsai et al., 2019; Huang et al.,
2020; Yuan et al., 2021; Liu et al., 2022). Tsai et al.
(2019) introduced the Multimodal Transformer (MulT) to
address modal data misalignment and long-distance depen-
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dencies. Huang et al. (2020) utilized the Transformer to
fuse audio-visual information on the model level, showing
the superiority of model-level fusion over other layers of
fusion strategies. Yuan et al. (2021) proposed a Transformer-
based feature reconstruction network to achieve more robust
multimodal emotion recognition. Despite the progress, exist-
ing Transformer-based methods mainly consider the feature
from a specific modality as the query, which could intro-
duce unnecessary noises or trivial information related to the
modality.

2.4 Multi-task Learning

Multi-task learning seeks to enhance the ability of a model
to generalize across various interconnected tasks by harness-
ing the collective knowledge gathered from the ensemble
of tasks (Zhang & Yang, 2022). This approach is gaining
traction in various fields (Bousmalis et al., 2016; Niu et
al., 2020; Liu et al., 2023). For example, Bousmalis et al.
(2016) proposed an novel approach by designing several
tasks to disentangle feature representations of source and tar-
get domains, thereby enhancing the model’s generalization
ability across different domains. Niu et al. (2020) intro-
duces multi-tasks for remote physiological measurement,
employing a cross-verified feature disentangling strategy to
simultaneously estimate multiple physiological signals. In
the field ofmultimodal emotion recognition, increasing num-
ber of works (Liu et al., 2018; Hazarika et al., 2020; Wang
et al., 2022) introduce multi-task learning to achieve more
robust emotion recognition performance. For instance, Liu
et al. (2018) designed self-learning based uni-modal tasks to
learn the consistency and difference between each modality.
Wang et al. (2022) proposed amulti-task learning framework
MT-TCCT, which enhances the performance of modality-
private and modality-shared representations by leveraging
the interdependence of sub-tasks. Overall, existing works are
almost no specific design of subtasks for emotion-irrelevant
noisy, which may lead to the model’s performance degrada-
tion in the face of different levels of noise effects.

In this work, we introduce a noise-aware learning scheme
based on multi-task learning and adversarial learning, which
has facilitated the model’s ability to perceive emotion-
irrelevant noise, thus improving the robustness of the model
in recognizing emotions.

3 Method

3.1 Overview

The overall processing pipeline of the proposed Noise-
Resistant Multimodal Transformer (NORM-TR) for the
robust emotion recognition is shown in Fig. 2. We make

theNORM-TRfirst extractNoise-ResistantGeneric Features
(NRGFs) and Multimodal Features (MFs) from the input.
Then, a multimodal fusion Transformer is employed to inte-
grate theMFs according to their relations to the NRGFs, thus
obtaining an end-to-end noise-resistant model for emotion
understanding. To train the NORM-TR properly, we intro-
duce a noise-aware learning scheme. In our learning scheme,
we manually erase some certain periods of information in
the multimodal input to implement the explicit inclusion of
noisy information, which does not contain any useful seman-
tics. By explicitly adding noisy information to either all the
multimodal inputs or the input data from a specific modality,
we devise two adversarial learning objectives to make the
NORM-TR robust against both types of added noisy infor-
mation.

Formally, our NORM-TR employs an NRGF extractor,
denoted as FN R , and an MF extractor, denoted as FM , to
extract detailed NRGFs and MFs from its input U ′, respec-
tively. Then, a multimodal fusion Transformer, T rans(·),
translates the MFs to the desired outputs ŷE for emotion
recognition according to the NRGFs. Therefore, our overall
pipeline can be described by:

ŷE = T rans
(
FN R(U ′),FM (U ′)

)
, (1)

where ŷE is the emotion recognition output, and the U ′ is
the noise-corrupted multimodal input. It is worth mentioning
that our NORM-TR, as described in Eq.1, also works for the
normal multimodal input without explicitly added noises.

3.2 Noise-CorruptedMultimodal Input

Regarding the normal multimodal emotion recognition, we
use the symbol U to represent the provided input multi-
modal information of a sequence. The U can represent the
input of audio, video, text, etc. In the rest of paper, we use
the Ua , Uv , and Ut to represent the audio, video, and text,
respectively. In the related literature (Tsai et al., 2019; Haz-
arika et al., 2020; Mao et al., 2022), pre-computed features
rather than raw data of different modalities are commonly
used, thus, to be fair, the U in our paper represents the pre-
computed feature vectors. For example, rather than using 2D
images of a video, we can have as input the pre-computed
features Uv ∈ R

T ×Nv where T represents the length of the
video, and Nv represents the length of the feature vector.
Correspondingly, for audio and text modalities, we can also
have as input the pre-computed features Ua ∈ R

T ×Na and
Ut ∈ R

T ×Nt , respectively, where Na and Nt are the lengths
of the corresponding feature vectors, and T is the unified
the length of the feature vector of each modality. We would
like to mention that using pre-computed features is widely
accepted in the literature onmultimodal emotion recognition,
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Fig. 2 Processing pipeline of the proposed NORM-TR for multimodal
emotion recognition. With the noise-corrupted multimodal input U ′,
we first apply a noise-resistant generic feature (NRGF) extractor to
extract a generic and disturbance-insensitive representation. Then, we
employ a multimodal fusion Transformer to improve NRGFs based on

the more detailed multimodal features (MFs). Moreover, we introduce
a novel noise-aware learning scheme to properly train the NORM-TR,
thus obtaining an end-to-end noise-resistant model for emotion under-
standing

and the research on more appropriate features to describe
multimodal raw data is beyond the scope of this study. With
the pre-computed features U = {Ua, Uv, Ut }, we employ
three fully-connected layers to unify the lengths of different
feature vectors, respectively. We use the symbol g to rep-
resent these fully-connected layers. After g, each modality
of the obtained U ′ = {U ′

a, U ′
v, U ′

t } would have a dimension
of T × N , where N is the unified length of feature vectors.
In the meantime, we use the V(U , σ ) to represent the pro-
cess that explicitly adds the noisy information σ to the input
U . Therefore, the noise-corrupted multimodal input to our
NORM-TR can be formulated as:

U ′ = g(V(U , σ )). (2)

The detailed formulation of our proposed NORM-TR,
such as theNRGFextractor, theMFextractor, themultimodal
fusion Transformer, and the noise-aware learning scheme,
will be described in the following sections, subsequently.

3.3 NRGF Extractor andMF Extractor

3.3.1 NRGF Extractor

With multimodal input U ′, we introduce an NRGF extractor
to obtain a generic feature that is insensitive and invariant to
noisy information. We achieve this by simply employing a
multi-layer perceptron:

FN R = FN R(U ′) = M L PN R(U ′, θN R), (3)

where FN R is the obtained NRGF, M L PN R represents
multi-layer perceptrons with shared parameters for extract-
ing NRGF. In practice, M L PN R is designed as a 2-layer
fully connected network, with each layer followed by Leaky-
ReLU (Maas et al., 2013) as the activation function. Using
the M L PN R , we reduce the feature dimension of U ′. More
specifically, if considering 3 modalities, the U ′ obtained by
Eq.2 has the dimension of 3T × N , and the FN R will have
a dimension of 3T × N

2 . In fact, we found that reducing the
feature dimension can save parameters and achieve higher
efficiency without sacrificing performance.

To make the NRGFs effective for extracting noise-
insensitive features, we introduce the noise-aware learning
scheme, which will be described in detail in the Sect. 3.5.

3.3.2 MF Extractor

In addition to the NRGF extractor, we also introduce the MF
extractor to extract and exploit detailed multimodal features
from the input. This is because we found that the NRGFmay
lose some details that are beneficial for accurate emotion
understanding. To implement the MF extractor, we still use
a multi-layer perceptron, thus we have:

FM = FM (U ′) = M L PM (U ′, θ∗). (4)

M L PM represents three separated multi-layer perceptrons
for MF extraction, where each multi-layer perceptron archi-
tecture in M L PM is the same as M L PN R . ∗ ∈ {a, v, t}.
Therefore, given 3 modalities as input, the FM will have the
size of 3T × N

2 . We would like to mention that the input fea-
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tureU ′ is sharedwith bothNRGF extractor andMF extractor.
In addition, we do not make the FM learn to become consis-
tent with noise-caused changes, making it more sensitive to
the variations in the multimodal input.

3.4 Transformer Structure and Emotion Recognition
Output

With the obtained NRGFs and MFs, we employ a multi-
modal fusion Transformer to achieve effective multimodal
emotion recognition. The Transformer can model the rela-
tions between NRGFs and MFs, which can make MFs more
appropriately complement the NRGFs based on their rele-
vance to the NRGFs. We found that this relation modeling is
important because the MFs could be more affected by noisy
information, and directly fusing themwith theNRGFswould
introduce the negative impacts of noises (with more details
in 4.7.1).

3.4.1 Multimodal Fusion Transformer

According to the definition of Vaswani et al. (2017), a Trans-
former takes as input the query, key, and value tensors. Then,
it uses the query tensor as a reference and transforms the value
tensor into desired output based on the relations between the
query tensor and key tensor. When transforming, multihead
attention mechanisms are performed to achieve the relation
modeling and data fusion. For more details, we refer readers
to Tsai et al. (2019). In NOMR-TR, NRGFs is specifically
designed tominimize the impact of emotion-irrelevant noisy,
and NRGFs also need the more detailed information from
MFs to capture modality-sensitive information and achieve
more promising performance. To reduce the possibility of
introducing noise to the fused feature again, we apply a
Transformer decoder structure which makes NRGF as query
and MFs as key/value data. Using this formulation, the MFs
will be fused w.r.t. NRGF according to attentional weights.
Since NRGF is noise-resistant, low attentional correlation
between NRGF and MFs would indicate irrelevant informa-
tion, i.e., noisy information defined in our paper. As a result,
our Transformer-based fusion method would minimize the
chance of introducing noisy information again during the
fusion.

In our study, using the extracted NRGFs as query andMFs
as key and value, we follow the typical formulation of the
Transformer structure for more effective multimodal fusion,
and implement the T rans(·) as:

T rans(·) = T rans(q = FN R, k/v = FM ), (5)

where q, k, and v represent the query, key, and value tensors
in a Transformer, respectively. More specifically, the query,
i.e., NRGFs extracted by FN R , have a shape of 3T × N

2 .

The key and value tensors share the same multimodal fea-
ture obtained by FM , which have a shape of 3T × N

2 . The
T rans(·) contains eight attention heads and attention blocks
of different depths on different datasets, e.g., 2 levels of depth
for MOSI (Zadeh et al., 2016) and RML (Wang & Guan,
2008) datasets, and 4 levels of depth for MOSEI (Zadeh et
al., 2018) and IEMOCAP (Busso et al., 2008) datasets. This
is because using more depths for smaller datasets like MOSI
and RML can easily result in over-fitting. In addition, fol-
lowing Dosovitskiy et al. (2021), we perform a learnable
positional encoding of timestamp of the sequence and add it
to the input of the Transformer. It is worthmentioning that we
have tried more complicated structures for fusion, but it does
not improve performance quite much (with more details in
4.7.4). We found that deep Transformer structures can also
overfit the dataset easily.

3.4.2 Emotion Recognition Output

After the multimodal fusion Transformer, we obtain the final
emotion recognition output ŷE by applying an emotion clas-
sification layer on the outputs of Transformer. Specifically,
the Transformer outputs a tensor of shape 3T × N

2 after rela-
tion modeling and tensor fusion. Then, we apply an average
pooling operation on the obtained tensor to reduce its dimen-
sion from 3T × N

2 to 1 × N
2 for relieving the computational

burden. The pooled tensor is later fed into a fully connected
layer for emotion classification. Lastly, we have the ŷE of a
shape 1 × C , where C represents the number of categories.
Each element of the ŷE represents a specific emotion like
happiness and angry. In general, with the help of the NRGF
extractor and the Transformer, we obtain an accurate estima-
tion ŷE that is much less affected by noisy information.

3.5 Noise-Aware Learning Scheme

By devising the NORM-TR, it is essential to apply appropri-
ate learning objectives to help our model learn to resist noisy
information. Therefore, we introduce a novel noise-aware
learning scheme for training the NORM-TR and making it
robust to noises. Our novel learning scheme explicitly adds
two types of noisy information to corrupt raw multimodal
data and then introduces two corresponding adversarial
losses to encourage the NORM-TR to provide an NRGF
invariant to the added noisy information.

3.5.1 Explicit Noisy Information

We explicitly add noisy information as described in Eq.2
because it is extremely difficult to properly define what pat-
terns should belong to noisy information and what should
not. Without explicit noisy information, we would not know
when amodel should be insensitive to the changes of patterns
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Fig. 3 Examples of adding noises of two types. aAddingType-1 noise,
b adding Type-2 noise

in the input sequence. Therefore, we attempt to explicitly add
noisy information to the multimodal input. Regarding this,
we randomly erase some certain periods of input multimodal
representation to remove any potential semantics in the input
data. In this study, we mainly consider two types of noisy
information: (Type-1) all the input multimodal data contains
random noisy information (see Fig. 3a); and (Type-2) only
the input data of a specific modality contains random noisy
information (see Fig. 3b). Training on the first case can help
the NORM-TR summarize generic and globally consistent
semantics, and the second case can help theNORM-TR focus
on improving its robustness against noisy information to each
specific modality. Our experimental results can validate the
importance of adding both types of noisy information. In
practice, we masking-out input information to implement
the Eq.2. For example, when adding the Type-1 noise, we
generate a mask for the pre-computed multimodal feature
vector of each modality. In each mask, we randomly sam-
ple a time window whose length ranges from 0 to T

2 time
steps, and then we set the values within this time window to
0 with the remaining values of this mask being 1. Thus, each
modality has its individual mask for processing. Then, we
multiply thesemasks with the pre-computedmultimodal fea-
ture vectors U , erasing the semantics contained in the period
corresponding to the sampled time window of this mask. In
addition, for adding the Type-2 noise, the semantic erasing
operations are similar to the procedure of adding the Type-1
noise, but the mask generation is different. In this case, we
only generate one mask, in which a time window contain-
ing 0s is sampled randomly. We multiply this mask to the
pre-comupted feature of a random modality, thus adding the
noise to this modality only.

As shown in Fig. 4, after adding noisy information, we use
two adversarial loss functions to define learning objectives
regarding both types of added noisy information, respec-

Fig. 4 The pipeline of the noise-aware learning scheme

tively. We apply adversarial loss functions because they are
powerful at making a model produce the high-dimensional
output with some desired patterns, e.g., producing a fake 2D
image that has very similar image patterns to the desired real
2D images. To implement the adversarial-based learning, a
discriminator is employed to learn to distinguish whether
the generated output fails to obtain the desired patterns. The
unsuccessfully generated output will be easily identified by
the discriminator, while the successfully generated output
will confuse the discriminator. The detailed generative adver-
sarial learning scheme can be found in Goodfellow et al.
(2014).

3.5.2 Adversarial Learning-Based Learning Scheme

Here, we attempt to use adversarial losses to make our
NORM-TR learn to produce the NRGF that is invariant to
noises. By resisting the impacts of the added noisy informa-
tion via adversarial learning, the NRGF extractor would be
more effective at extracting semanticallymeaningful features
from the input data, which can further improve the robustness
of emotion recognition. Formally, we use the symbols FD1,
FD2 to represent the discriminators of Type-1 and Type-2
added noises, respectively. Figure4 shows the detailed adver-
sarial learning structure of our noise-aware learning scheme.

More specifically, since the Type-1 noises are randomly
added to all the multimodal input, the NRGF extractor
is supposed to find generic and universal patterns from
the noise-corrupted multimodal input, so that the extracted
NRGF can be invariant to the Type-1 noises. To achieve this,
we employ a discriminator FD1 and make it learn to clas-
sify whether its input feature contains modality-dependant
patterns: if the input to FD1 is a modality-specific feature
from the MFs FM , we make this discriminator learn to pre-
dict which modality this feature represents; if the input to
FD1 is the NRGF, we make the NRGF extractor confuse this
discriminator. Therefore, when the NRGF extractor fails to
provide generic and consistent features, it would not confuse
the discriminator effectively. By confusing the discriminator,
the extracted NRGF would be representative for the entire
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multimodal input rather than a specific modality that can be
more likely to be affected by the added Type-1 noise. To sum
up, suppose the model parameter of NRGF extractor is θN R ,
and the model parameters of the discriminator FD1 are θD1.
Then, the first objective of our noise-aware learning scheme
can be described by the optimization w.r.t. the adversarial
losses Ladv−1 for Type-1 added noisy information:

min
θD1

max
θN R

Ladv−1 = − 1

Nb

Nb∑
i=0

yi
M ·log FD1(FN R/FM ; θD1),

(6)

where Nb is the number of samples in the training set, yi
M

represents the label indicating which modality the FN R or
FM comes from, and FN R is the NRGF extracted according
to the parameter θN R . To make the NRGF compatible to
FD1 that identifies the modality-dependent features, we add
3 extra MLPs to explain the FN R of 3T × N

2 into the features
related to 3 input modalities, respectively, with a shape of
3 × (T · N

2 ).
Regarding the Type-2 noises, we also employ a dis-

criminator FD2 to help train the NRGF extractor. Different
from the Type-1 noises, we add noises to only one random
modality. Learning against the Type-2 noises can help the
NORM-TR works effectively on the input without adding
explicit noises while still maintaining its capability of being
robust against noises existing in a random modality. Regard-
ing the Type-2 noises, we simplymake the discriminatorFD2

identify whether a modality contains noises: if the input to
FD2 is related to the inputwithout added noises,wemake this
discriminator predict a negative label; otherwise, we make
this discriminator predict a positive label. Therefore, if the
NRGF fails to be invariant to the noises only added to a spe-
cific modality, the NRGF extractor would also fail to confuse
the discriminator and the FD2 can easily identify the noises
by predicting a positive label. To this end, suppose the model
parameters of the FD2 are θD2. We have the second objec-
tive of our noise-aware learning scheme as the optimization
w.r.t. the adversarial losses Ladv−2 for Type-2 added noisy
information:

min
θD2

max
θN R

Ladv−2 = − 1

Nb

Nb∑
i=0

yi
N · log FD2(FN R; θD2), (7)

where yi
N is the label indicating which modality is corrupted

by added noises.
In practice, we use the fully-connected layer to implement

the two discriminators, each of which consists of a fully-
connected layer. In addition, we apply the gradient reversal
layer (GRL) (Ganin & Lempitsky, 2015) to implement the
adversarial learning w.r.t. NRGF extractor that is supposed
to confuse the two discriminators.

3.6 Overall Learning Objectives

To sum up, our method involves three learning objectives,
including two adversarial loss functionsLadv−1 andLadv−2,
and one final emotion learning loss Ler . Considering that
the emotion labels on different datasets are different, for
example, the labels on the RML (Wang & Guan, 2008) and
IEMOCAP (Busso et al., 2008) datasets are discrete, while
the labels on the MOSI (Zadeh et al., 2016) and MOSEI
(Zadeh et al., 2018) datasets are continuous. Therefore, we
introduce the cross-entropy loss as the emotion learning loss
Ler for classification on the RML and IEMOCAP datasets,
and the mean squared error (MSE) as Ler for regression on
the MOSI and MOSEI datasets. The emotion learning loss
Ler can be written as:

Ler =

⎧
⎪⎨
⎪⎩

− 1
Nb

∑Nb
i=0 yi · log ŷi

E for classification

1
Nb

∑Nb
i=0

∥∥yi − ŷi
E

∥∥2
2 for regression

(8)

where yi is the emotion label of the i-th sample. ŷi
E is the

prediction of NORM-TR. The overall objective function L
is the sum of Ladv−1, Ladv−2, and Ler . Mathematically, the
L can be written as:

L = αLadv−1 + βLadv−2 + γLer . (9)

In our experiments, on MOSI and MOSEI datasets, α =
0.01, β = 0.01 and γ = 1; on RML and IEMOCAP datasets,
α = 0.005, β = 0.005 and γ = 1.

4 Experiment

4.1 Datasets

We conducted extensive experiments on three trimodal
datasets (MOSI (Zadeh et al., 2016), MOSEI (Zadeh et al.,
2018), and IEMOCAP (Busso et al., 2008)), as well as a
bimodal emotion dataset (RML (Wang & Guan, 2008)).
These datasets cover different languages and various sce-
narios like natural and laboratory scenes, dialogue, and solo
presentations.

MOSI The MOSI dataset consists of 2,199 multimodal
sequence samples with video, audio, and text modalities. The
training, validation, and testing sets of MOSI contain 1,284
samples, 229 samples, and 686 samples, respectively. Each
multimodal sample has a uniform label that ranges from -3
to 3. The -3 and +3 represent strongly negative and strongly
positive emotions, respectively.

MOSEITheMOSEI dataset comprises 22,851 video clips
collected from YouTube with spontaneous expressions, head
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poses, occlusions, illuminations, and so on. This dataset is
divided into 16,326 training samples, 1,871 validation sam-
ples, and 4,659 test samples in speaker-independent settings.
Each sample is manually annotated with a sentiment score
from -3 (strongly negative) to 3 (strongly positive).

IEMOCAP The IEMOCAP includes video, audio, and
text transcriptions and 12h of video recordings of situational
dialogues. The data is divided into five sessions with a total
of 10,039 samples and 9 emotion categories. Following the
comparison methods (Tsai et al., 2019; Lv et al., 2021), we
used the four emotion categories, i.e., happiness, anger, sad-
ness, and neutral. The data is partitioned into 2717 training
samples, 798 validation samples, and 938 testing samples.

RML The RML is an audio-visual emotion dataset, con-
taining 8 topics with 720 video samples, with six different
languages (i.e., English, Mandarin, Urdu, Punjabi, Persian,
and Italian). Each data was labeled as one of six emotions,
i.e., anger, disgust, fear, happiness, sadness, and surprise. The
training and testing sets were in a ratio of about 8:2 for cross-
validation with speaker-independent settings, which ensures
that the speakers in the training set were not in the corre-
sponding test set.

4.2 Implementation Details

Weused PyTorch to implement ourmethod. The experiments
were conducted on a PC with Intel(R) Xeon(R) Gold 6240C
CPUat 2.60GHz and 128GBmemory andNVIDIAGeForce
RTX 3090. The key training parameters include initial learn-
ing rate (0.0001), cosine annealing schedule to adjust the
learning rate, mini-batch size (16), and warm up.

For the sequence length setting, we unified the length of
the sequences to 8 on the RML and IEMOCAP datasets (i.e.,
T = 8), and 50 on the MOSI and MOSEI datasets (i.e.,
T = 50). The generation of video modality is different from
audio and text modalities. More specifically, for the video
modality, we divided the input video into T segments and
randomly sampled one frame from each of the segment to
form a video sequence of length T . For the audio and text
modalities, we directly truncated the first T frames of the
data as the input sequence.

4.3 Pre-computed Feature Extraction

Video features Uv: For the RML and IEMOCAP datasets,
following the existing method (Zhao et al., 2020), we
employed a ResNet-18 (He et al., 2016) to extract the last
global averaging pooling output of the ResNet-18 as the pre-
computed video features. For theMOSI andMOSEI datasets,
referring to the existing methods (Tsai et al., 2019; Haz-
arika et al., 2020; Mao et al., 2022), we used the features
provided in the dataset, which had been extracted by the
OpenFace (Baltrusaitis et al., 2016).

Audio features Ua : For RML and IEMOCAP, we first
used Librosa to compute the log mel-spectrogram and its
first and second-order differentials of each sample, and then
employed a ResNet-18 (He et al., 2016) to extract features.
Finally, we stacked all feature vectors and obtained the pre-
computed audio features. For MOSI and MOSEI, we used
the features provided by the dataset, which were extracted
by the Librosa.1

Text features Ut : For IEMOCAP, we used a pre-trained
BERT (Kenton & Toutanova, 2019) as the feature extractor
to encode the transcribed word sequences into the pre-
computed text features. For MOSI and MOSEI datasets, we
also used the text features provided by the dataset, which
were extracted by BERT.

4.4 EvaluationMetrics

On the RML dataset, we chose two widely-used evaluation
metrics, i.e., six classification accuracy (Acc-6) andweighted
F-Score (F1) to evaluate the performance. On the IEMOCAP
dataset,we followedpreviousworks (Lv et al., 2021) to report
the binary classification accuracy (Acc-2) and weighted F1
for each emotion category.

On MOSI and MOSEI, referring to prior works (Yu et
al., 2020), we used six widely-used evaluation metrics: Acc-
2, weighted F1, seven classification accuracy (Acc-7), mean
absolute error (MAE), and the correlation of the model’s
prediction with human annotations (Corr). Specifically, fol-
lowing priorworks (Hazarika et al., 2020;Yu et al., 2021), we
calculated Acc-2 and F1 in two ways: negative/non-negative
and negative/positive onMOSI andMOSEI datasets, respec-
tively. Additionally, it should be noted that some works
Franceschini et al. (2022); Mittal et al. (2020a) use MOSEI
to study multi-label multimodal emotion recognition with
six discrete basic expressions: Happiness, Sadness, Fear,
Surprise, Disgust, and Anger. For a more comprehensive
evaluation, although our work primarily focuses on Pos-
itive/Negative single-label emotion classification, we also
evaluate our method using a multi-label emotion recognition
metric on the MOSEI dataset (see Sect. 4.7.14).

To validate the robustness of ourmethod to different inten-
sities of noise, referring to previous work (Yuan et al., 2021),
we introduced Area Under Indicators Line Chart (AUILC) to
evaluate the noise robustness of our method on the test set.
The AUILC can be written as:

AUILC =
∑

t

(xt + xt+1)

2
· (rt+1 − rt ) (10)

1 https://librosa.org.
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Table 1 Comparison results on MOSI dataset

Methods Acc-7 (↑) Acc-2 (↑) F1 (↑) MAE (↓) Corr (↑)
TFN (Zadeh et al., 2017) 34.9 –/80.8 –/80.7 0.901 0.698

LMF (Liu et al., 2018) 33.2 –/82.5 –/82.4 0.917 0.695

MFM (Tsai et al., 2019) 35.4 –/81.7 –/81.6 0.877 0.706

ICCN (Sun et al., 2020) 39.0 –/83.0 –/83.0 0.877 0.706

MuLT (Tsai et al., 2019) 40.0 –/83.0 –/82.8 0.871 0.698

MISA (Hazarika et al., 2020) 42.3 81.8/83.4 81.7/83.6 0.783 0.761

PMR (Lv et al., 2021) 40.6 –/83.6 –/83.4 – –

Self-MM (Yu et al., 2021) 45.8 84.0/86.0 84.4/86.0 0.713 0.798

FDMER (Yang et al., 2022) 44.1 –/84.6 –/84.7 0.724 0.788

Our NORM-TR 48.5 84.3/86.1 84.4/86.2 0.698 0.808

For each evaluation metric, ↑ indicates the bigger the better while ↓ indicates the smaller the better. The best result is highlighted in bold

Table 2 Comparison results on MOSEI dataset

Method Acc-7 (↑) Acc-2 (↑) F1 (↑) MAE (↓) Corr (↑)
TFN (Zadeh et al., 2017) 50.2 –/82.5 –/82.1 0.593 0.700

LMF (Liu et al., 2018) 48.0 –/82.0 –/82.1 0.623 0.677

MFM (Tsai et al., 2019) 51.3 –/84.4 –/84.3 0.568 0.717

ICCN (Sun et al., 2020) 51.6 –/84.2 –/84.2 0.565 0.713

MuLT (Tsai et al., 2019) 51.8 –/82.5 –/82.3 0.580 0.703

MISA (Hazarika et al., 2020) 52.2 83.6/85.5 83.8/85.3 0.555 0.756

PMR (Lv et al., 2021) 52.5 –/83.3 –/82.8 – –

Self-MM (Yu et al., 2021) 53.5 82.8/85.2 82.5/85.3 0.530 0.765

FDMER (Yang et al., 2022) 54.1 –/86.1 –/85.8 0.536 0.773

Our NORM-TR 54.6 84.3/86.6 84.5/86.6 0.529 0.778

For each evaluation metric, ↑ indicates the bigger the better while ↓ indicates the smaller the better. The best result is highlighted in bold

where xt and xt+1 represent the t-th and t + 1-th evaluation
results under masking percentages of rt and rt+1, respec-
tively.

4.5 Overall Performance

4.5.1 Experiments on the MOSI Dataset

Table 1 lists the comparison results of our proposed method
and state-of-the-art methods on the MOSI dataset. As shown
in the table, the proposed NORM-TR achieved an improve-
ment of 2.7%on theAcc-7 compared to the second best result
obtained bySelf-MM(Yu et al., 2021). Compared to the other
Transformer-based method FDMER (Yuan et al., 2021), our
method gained a relative improvement of 9.98% on the Acc-
7. Moreover, we also achieved state-of-the-art performance
on all other metrics, especially on the more difficult seven
classification task. We attribute such a large improvement to
the fact that the extracted noise-resistant features can help our
NORM-TR suppress useless noisy information during the

fusion process, thus improving multimodal emotion recog-
nition.

4.5.2 Experiments on the MOSEI Dataset

Table 2 reports the comparison results of our method
and state-of-the-art methods on the MOSEI dataset. Our
NORM-TR achieved significant improvement at the Acc-
2, F1, Acc-3, Acc-5, MAE, and Corr. Compared to these
Transformer-based methods, namely FDMER (Yang et al.,
2022), and MulT (Tsai et al., 2019), we achieved relative
improvements in all metrics, e.g., with 0.92% on Acc-7 and
0.93% on F1, respectively. Achieving such superior perfor-
mance on large-scale datasets with more complex scenarios
demonstrates the ability of our NORM-TR to extract effec-
tive emotion information from various scenarios.

4.5.3 Experiments on the IEMOCAP Dataset

Table 3 shows the comparison results of our method and
state-of-the-art methods, including MulT (Tsai et al., 2019),
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Table 3 Comparison results on IEMOCAP dataset

Methods Happiness Sadness Anger Neutral Average

Acc-2 F1 Acc-2 F1 Acc-2 F1 Acc-2 F1 Acc-2 F1

EF-LSTM 76.2 75.7 70.2 70.5 72.7 67.1 58.1 57.4 69.3 67.7

LF-LSTM 72.5 71.8 72.9 70.4 68.6 67.9 59.6 56.2 68.4 66.6

RAVEN (Wang et al., 2019) 77.0 76.8 67.6 65.6 65.0 64.1 62.0 59.5 67.9 66.5

MCTN (Pham et al., 2019) 80.5 77.5 72.0 71.7 64.9 65.6 49.4 49.3 66.7 66.0

MulT (Tsai et al., 2019) 84.8 81.9 77.7 74.1 73.9 70.2 62.5 59.7 74.7 71.5

PMR (Lv et al., 2021) 86.4 83.3 78.5 75.3 75.0 71.3 63.7 60.9 75.9 72.7

ScaleVLAD(Luo et al., 2021) 86.7 85.9 84.8 84.6 86.8 86.9 72.1 72.1 82.6 82.4

Our NORM-TR 87.7 88.5 86.2 86.4 88.6 88.6 74.8 74.3 84.3 84.5

Note: the best result is highlighted in bold

PMR (Lv et al., 2021), and ScaleVLAD (Luo et al., 2021),
on the IEMOCAP dataset. It is observed that our proposed
NORM-TR achieved the best performance, which demon-
strates the superiority of our NORM-TR. Compared with
the state-of-the-art method ScaleVLAD, our NORM-TR
achieved a relative 2.06% and 2.55% improvements on the
averaged Acc and F1, respectively. In addition, we also
achieved best performance for all four categories on the
binary accuracy corresponding F1.

4.5.4 Experiments on the RML Dataset

Table 4 reports the comparison results of our method and
state-of-the-art methods on the RML dataset. Compared to
the second best result obtained by MulT (Tsai et al., 2019),
our NORM-TR achieved a relative 3.23% boost on the aver-
aged accuracy. Compared to the Census-Transform proposed
by Cornejo and Pedrini (2019), our NORM-TR achieved a
greater relative improvement of 7.75%. It shows that our
method effectively addresses the effect of noise information
to improve the performance of Transformer.

4.6 Robustness Evaluation for Noisy Data

To further verify the robustness of our method to noisy data,
we evaluated our method with test data under different mask-
ing percentages rt . More specifically, we first obtain the
performance of NORM-TR corresponding to varying val-
ues of rt ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0},
and based on this range of rt and its corresponding perfor-
mance xt , we calculated the results using the AUILC formula
as shown in Eq.10. Table 5 reports the AUILC results of
our method and state-of-the-art methods on the MOSI and
MOSEI datasets, respectively. It is obvious that our NORM-
TR achieved better performance on almost all metrics on the
MOSI dataset, i,e., 31.3% on Acc-7, 68.6% on Acc-2, 1.093
on MAE, and 0.506 on Corr, respectively. On the MOSEI

dataset, our method also obtained significant improvements
on all metrics. For example, compared to TFR-Net (Yuan et
al., 2021), our method obtained a relative improvement of
1.72% on the Acc-7, 2.05%/2.41% on the Acc-2, 1.90% on
the MAE, and 6.60% on the Corr, respectively. It demon-
strates the great robustness of our method in the face of noise
disturbances.

In addition, Fig. 5 shows the metric curves with the
test data under various mask percentages on MOSI dataset.
As shown in the figure, NORM-TR outperforms the other
methods on almost all evaluation metrics at various mask
percentages rt ∈ {0, 0.1, · · · , 0.8}, indicating that our
NORM-TR achieves greater robustness to noisy.

4.7 Ablation Study and Analysis

4.7.1 Effects of Different Components

To better study the influence of each component in the pro-
posed NORM-TR, Table 6 reports the ablation results of the
subtraction of each component from the NORM-TR frame-
work on the MOSI and MOSEI datasets, respectively. It
is worth noting that the proposed NORM-TR has achieved
state-of-the-art performance. As shown in the table, subtract-
ing the NRGF or MF extractor decreases the accuracy to
suboptimal performance, demonstrating the importance of
both extractors for robust multimodal emotion recognition.

Specifically, although only removing the MF extractor
(see the third row) results in a relatively minor performance
drop on the MOSI dataset (only 0.4%), it should be empha-
sized that this small decrease highlights the dataset’s size
limitations. The MOSI dataset, with about 1,284 training
instances, poses a significant challenge for capturing fine-
grained patterns. In contrast, on the larger MOSEI dataset
with about 16,326 training samples, the inclusion of MFs
leads to a more noticeable improvement, underscoring their
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Table 4 Comparison results on RML

Methods Acc-6 F1

(El-Madany et al., 2016) 75.00 –

(Zhang et al., 2018) 80.36 –

(Ma et al., 2019) 80.46 –

(Cornejo & Pedrini, 2019) 82.50 –

TFN∗ (Zadeh et al., 2017) 83.19 83.22

MulT∗ (Tsai et al., 2019) 86.11 85.87

MISA∗ (Hazarika et al., 2020) 81.11 80.78

Our NORM-TR 88.89 88.81

The best result is highlighted in bold and ∗ indicates that the result is reproduced by authors

Table 5 Model robustness comparison on MOSI and MOSEI datasets

Method MOSI MOSEI

Acc-7 (↑) Acc-2 (↑) MAE (↓) Corr (↑) Acc-7 (↑) Acc-2 (↑) MAE (↓) Corr (↑)
TFN (Zadeh et al., 2017) – –/60.4 1.327 0.300 – –/– – –

MulT (Tsai et al., 2019) – –/61.8 1.288 0.334 – –/– – –

MISA (Hazarika et al., 2020) – –/63.2 1.209 0.403 – –/– - -

TFR-Net (Yuan et al., 2021) – –/69.0 1.155 0.467 – –/– – –

TFN* (Zadeh et al., 2017) 22.0 62.6/62.6 1.281 0.342 45.1 70.8/72.6 0.726 0.409

MulT* (Tsai et al., 2019) 22.7 63.5/64.0 1.265 0.339 46.4 74.5/75.5 0.692 0.504

MISA* (Hazarika et al., 2020) 27.0 65.4/65.4 1.181 0.412 44.5 73.3/74.5 0.720 0.421

TFR-Net* (Yuan et al., 2021) 26.8 67.8/68.2 1.175 0.445 46.5 73.3/74.7 0.686 0.515

Our NORM-TR 31.3 68.6/68.6 1.093 0.506 47.3 74.8/76.5 0.673 0.549

For each evaluation metric, ↑ indicates the bigger the better while ↓ indicates the smaller the better. The best result is highlighted in bold, ∗ indicates
that the result is reproduced by authors

Fig. 5 Visualization of the metrics curves for test data under various mask percentages on the MOSI dataset

Table 6 Ablation study of the proposed NORM-TR

Method MOSI MOSEI

Acc-7 (↑) MAE (↓) Acc-7 (↑) MAE (↓)
NORM-TR 48.5 0.698 54.6 0.529

w/o only NRGF extractor 46.8 0.726 52.3 0.547

w/o only MF extractor 48.1 0.706 53.6 0.534

w/o Multimodal fusion transformer 45.6 0.734 53.8 0.536

w/o Noise-aware learning scheme 46.9 0.721 53.2 0.544

Standard transformer (baseline) 21.0 0.900 40.3 0.831

For each evaluation metric, ↑ indicates the bigger the better while ↓ indicates the smaller the better. The best result is highlighted in bold
Each line ‘w/o’ indicates the effect of subtracting this component in NORM-TR on the MOSI and MOSEI dataset, respectively
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importance in leveraging detailed information for better per-
formance.

The removal of themultimodal fusion Transformer results
in another performance drop, highlighting its effectiveness
in modeling the relations between NRGFs and MFs. Finally,
the performance drops significantly when the noise-aware
learning scheme is removed, especially for Acc-7, indicating
that the noise-aware learning scheme helps the model learn
more useful emotion semantics from the multimodal data.
Additionally, we observed that the performance degradation
is more significant when the NRGF extractor is removed
compared to the removal of the MF extractor. This could
be because MFs contain more noisy information.

Notably, with the removal all components proposed in
NORM-TR framework (see the last row), we conducted a
standard Transformer as our baseline. When using the stan-
dard Transformer, we simply concatenate the three input
modalities without leveraging the NRGF and MF extrac-
tors for learning, and then fuse them using the Transformer.
As expected, this method yields the lowest accuracy. For
example, the Acc-7 on the MOSI dataset is only 21%, show-
ing a dramatic drop. However, we found that on the larger
dataset MOSEI, the decline is not as large as on the MOSI
dataset, although themodel Acc-7 accuracywas also low.We
believe this is due to two main reasons: (1) the unprocessed
multimodal inputs have significantly different distributions,
increasing the difficulty of fusion for theTransformer. (2)The
training data is not sufficient for the standard Transformer to
learn to bridge the gaps, which can be partially supported by
recent studies (Lian et al., 2024; Akbari et al., 2021; Kim et
al., 2021)

4.7.2 Effects of Different Modalities

To discuss the effect of each modality on performance,
Table 7 presents the ablation results of different modality
settings on MOSI and MOSEI datasets, respectively. We
observe that the combination of video, audio, and text infor-
mation provided the best performance, suggesting that our
model can learn the effective multimodal emotion represen-
tation for robust emotion recognition. On both datasets, the
performance sharply dropped when the text modality was
removed, indicating that the text modality plays an impor-
tant role in multimodal emotion recognition.

In addition, we tried to include different levels of Type-
2 noise in each modality respectively on MOSI dataset, to
discuss the sensitivity of each modality to noise. We found
that the performance degradation was more significant when
adding the noise to the text modality (e.g., decreased by
13% on Acc-7 at 50% mask percentage) than the audio and
video modalities (e.g., decreased by 0.6% and 1.1% on Acc-
7 separately at 50% mask percentage). It shows that the text
modality is more sensitive to noise than the other modalities.

4.7.3 Performance of Unimodality with Masked Input for
Recognition

In order to explore the advantages ofmultimodality under the
mask setting, we conducted classification experiments on the
unimodal data with mask input. The relevant result is shown
in Table 8. More specifically, we evaluated on the test set of
MOSI andMOSEI under different masking percentages rt ∈
{0, 0.1, ..., 1.0}, and used AUILC (see Eq.10) to evaluate the
performance. The results show that the model achieve the
best performance under the multimodal setting. In contrast,
when only a unimodality is used for emotion recognition,
the performance decreases significantly. This phenomenon
demonstrate that multimodal data can effectively enhance
the robustness of the model. Moreover, it is worth noting
that the accuracy is relatively low when either video or audio
modality alone is used for emotion recognition. This may be
due to the fact that text modality usually provides a greater
contribution in emotion recognition, as also observed and
discussed in other studies (Zhang et al., 2023). Therefore,
we believe that pay more attention to suppressing emotion-
irrelevant noise in each modality is necessary.

4.7.4 Effects of the Hyper-Parameter Settings in
Transformer

Figure 6a presents the accuracy of emotion recognition on
the RML dataset, which is effected by the number of atten-
tion blocks in the Transformer architecture. As shown from
the results, the accuracy achieved the highest 88.89% when
we set the depth to 2. Besides, we also observe that differ-
ent Transformer depths only resulted in minor performance
variations, indicating that the parameter has a small impact
on our method.

In addition, we tried using more complex Transformer
models instead of our multimodal fusion Transformer for
fusion on the RML dataset, e.g., (1) using pairs of Trans-
formers similar toMulT (Tsai et al., 2019); (2) concatenating
the NRGFs and MFs and using a deeper ViT (Dosovitskiy
et al., 2021) for fusion. We found that these complex mod-
els did not improve the performance, i.e., obtaining 88.75%
and 88.19% of Acc-6 on the RML dataset by MulT and ViT,
repectively. Meanwhile, these complex models require more
parameters for training and additional computational cost
(about 1 MACs). Our simple but effective multimodal fusion
Transformer is able to complement the potentially insensi-
tive but useful information of NRGFs by MFs containing
more details, achieving more accurate emotion understand-
ing (88.89% of Acc-6).
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Table 7 Effects of different modalities

Method MOSI MOSEI

Acc-7 (↑) MAE (↓) Acc-7 (↑) MAE (↓)
NORM-TR 48.5 0.698 54.6 0.529

w/o Audio 43.6 0.761 50.6 0.655

w/o Video 43.3 0.765 51.8 0.592

w/o Text 18.1 1.410 41.2 0.831

For each evaluation metric, ↑ indicates the bigger the better while ↓ indicates the smaller the better. The best result is highlighted in bold

Table 8 Performance of unimodality with masked input for recognition

Modality MOSI MOSEI

Acc-7 (↑) MAE (↓) Acc-7 (↑) MAE (↓)
Text (T) 30.7 1.104 45.9 0.679

Audio (A) 16.6 1.406 40.5 0.853

Video (V) 17.0 1.415 41.6 0.822

T+A+V 31.3 1.093 47.3 0.673

For each evaluation metric, ↑ indicates the bigger the better while ↓ indicates the smaller the better. The best result is highlighted in bold

Fig. 6 The impact of important parameter settings in Transformer on
the RML dataset. a The effect of attention blocks in Transformer, and
b the effect of the number of sampled frames in per sequence

4.7.5 Effects of the Input Feature Vector Length

In Fig 6b, we present the accuracy curves, which are effected
by the length of the input feature vector, i.e., the number of
frames sampled from an original sequence. As shown in the
figure, the accuracy achieved the highest 88.89% when we
set the length to 8. Hence, in this study, we set the length
of the input feature vector to 8. Moreover, the performance
sharply dropped when the length was set to 32, indicating
that too many frames sampled from data tend to introduce
additional noise and lead to poor results.

4.7.6 Different Query, Key, and Value Settings in
Transformer

Table 9 presents the experimental results of different query,
key, and value settings in Transformer on the MOSI and
MOSEI datasets, respectively. We find that the best perfor-

Table 9 Effect of different Query, Key, and Value Setting in Trans-
former

Q K & V MOSI MOSEI

Acc-7 (↑) MAE (↓) Acc-7 (↑) MAE (↓)
MFs NRGFs 47.1 0.706 53.2 0.539

NRGFs MFs 48.5 0.698 54.6 0.529

Note: for each evaluation metric, ↑ indicates the bigger the better while
↓ indicates the smaller the better. The best result is highlighted in bold

mance of the model was obtained when using the NRGFs as
the query and the MFs as the key and value. This demon-
strates that our NORM-TR has the ability to extract a more
generic and useful query for the Transformer to help achieve
better emotion recognition performance.

4.7.7 Effects of the Weights for Regularization

To discuss the effect of the regularization of NORM-TR, we
show the ablation result of α and β settings on MOSI and
SIMS dataset in Table 10. More specifically, in our experi-
ments, we chose different values of α and β for a series of
evaluations. The experimental results show that the overall
performance of the model on the MOSI dataset is best when
the values of both α and β are set to 0.01. It is worth noting
that when α and β are 0.005, the model performs poorly in
Acc-7, even though it achieves the best MAE on the MOSI
dataset. Therefore, based on these observations, we empiri-
cally fix the values of α and β to 0.01.

123



International Journal of Computer Vision

Table 10 Effects of the weights for regularization

α β γ MOSI MOSEI

Acc-7 (↑) MAE (↓) Acc-7 (↑) MAE (↓)
0.001 0.001 1.0 44.8 0.701 52.9 0.543

0.005 0.005 1.0 47.4 0.697 52.3 0.547

0.01 0.01 1.0 48.5 0.698 54.6 0.529

0.05 0.05 1.0 46.5 0.715 53.2 0.546

0.1 0.1 1.0 44.9 0.728 52.0 0.552

0.5 0.5 1.0 46.5 0.713 52.5 0.546

1.0 1.0 1.0 44.6 0.716 52.3 0.550

Note: for each evaluation metric, ↑ indicates the bigger the better while ↓ indicates the smaller the better. The best result is highlighted in bold

Table 11 Effects of the different backbone

Backbone Acc-6 F1

ResNet-18 88.89 88.81

ResNet-34 85.28 85.09

ResNet-50 84.44 84.25

ViT-B/16 79.03 78.91

4.7.8 Effects of the Different Backbone

To discuss the impact of the different backbone on model
performance. As shown in Table 11, we selected ResNet and
Vision Transformer (ViT) (Dosovitskiy et al., 2021) as back-
bone for our experiments on the RML dataset. Obviously, the
NORM-TRachieve the best performance on theRMLdataset
when ResNet-18 is set as backbone, with a 6-classification
accuracy and F1 score of 88.89% and 88.81%, respectively.
In contrast, when backbone is replaced with ResNet-34,
ResNet-50, and ViT, the performance of the model drops
significantly. We observed that the models under all four
Backbone configurations showed overfitting due to the small
sample size of the dataset (e.g., the RMLdataset has only 720
training samples). A similar situation was also observed on
the IEMOCAP dataset. Therefore, we chose to use ResNet-
18 as the backbone of the NORM-TR to extract features from
these datasets more efficiently.

4.7.9 Effects of Different Fusion Techniques

To discuss the effects of different fusion techniques, we
use a different technology for feature fusion on MOSI and
MOSEI datasets. The details are shown in Table 12. Obvi-
ously, NOMR-TR perform best when using Transformer for
feature fusion, demonstrating that using NRGFs as query,
MFs as Key/Value can obtain a more complementary feature
for emotion recognition.

Table 12 Effects of different fusion techniques

Fusion technique MOSI MOSEI

Acc-7 (↑) MAE (↓) Acc-7 (↑) MAE (↓)
Concatenation 45.6 0.734 53.8 0.536

LSTM 44.5 0.754 53.2 0.544

GRU 43.2 0.768 52.7 0.538

Tensor Fusion (TFN) 44.9 0.759 53.2 0.543

Low-rank Fusion (LMF) 45.5 0.744 53.0 0.532

Ours 48.5 0.698 54.6 0.529

4.7.10 Visualization of the Input Unimodal Features and
Final Fused Features

As shown in Fig. 7, we use t-sne (Van der Maaten & Hinton,
2008) to visualize the input unimodal feature (i.e.,U ′

a ,U
′
v and

U ′
t ) and the final fused features. The visualizations shows that

while unimodal features provide overlapping feature distri-
butions for emotion classification, the final fused features
exhibit more distinct clustering, especially for strongly posi-
tive. It demonstrates that multimodal fusion enhances feature
separation and potentially improves classification accuracy
by integrating the diverse and complementary information
from each modality.

4.7.11 Visualization of the NRGFs andMFs

From the Fig. 8a, we can observe that the NRGFs extracted
from the text modality are closer to the NRGFs extracted
from the video and audio modalities in the feature space,
which implies that themodel prefersNRGFs that are comple-
mentary to the text modality when extracting features from
the video and audio modalities.This phenomenon is in line
with the results of our previous ablation experiments (see
Sects. 4.7.2 and 4.7.3) and previous works (Zhang et al.,
2023), which show that the model performance shows a sig-
nificant decrease when the text modality is removed. This
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Fig. 7 Visualization of the input unimodal features (U ′
a/U ′

v/U ′
t ) and

final fused features on MOSI dataset

Fig. 8 Visualization of the NRGFs and MFs on MOSI dataset

result confirms that the text modality plays a more important
role in emotion recognition. On the contrary, we can see from
the Fig. 8b that the difference in the distribution of MF fea-
tures between modalities is more significant, indicating that
the model adopts a different strategy from NRGF in extract-
ingMF features, thus acquiring amore comprehensivemodal
representation for emotion recognition.

Furthermore, despite the moderating effect of FD1 in
adversarial learning, the distribution of NRGF did not com-
pletely converge to a same distribution. We hypothesize that
this reflects the complexity of the emotion features them-
selves, i.e., themodel does not tend to forcefully alignNRGFs
extracted in different modalities to the same distribution.
Instead, themodel seems to adaptivelyfind abalance between
maintaining performance optimization and feature distribu-
tion consistency.

4.7.12 Visualization of Noise-Resistant and Multimodal
Feature Distributions

In Fig. 9, we visualized the similarity distributions of the
extracted Noise-Resistant Generic Features (NRGFs) and

Fig. 9 Visualization of NRGFs and MFs distributions on the MOSI
dataset, with and without using the proposed noise-aware learning
scheme, respectively. a Similarities distributions without using the
noise-aware learning scheme on MOSI dataset; b Similarities distri-
butions with using the noise-aware learning scheme on MOSI dataset

Fig. 10 Visualization of the attention weights learned by the multi-
modal fusion Transformer for a randomly selected sample without and
with a randommask on the RML dataset. a The attention weights with-
out the mask noise, b the attention weights with the mask noise. Note:
darker colors indicate higher attention weights for learning and the
red dashed boxes represent the attention distribution of two randomly
selected frames in the sequence

Multimodal Features (MFs) on the MOSI dataset, with and
without using the proposed noise-aware learning scheme,
respectively. We applied the Kernel Density Estimation
(KDE) and cosine similarity to describe the similarity dis-
tribution of the two types of features. As shown in Fig. 9b,
with a noise-aware learning scheme, most of the NRGFs are
similar (similarities close to 1) while most of the NRGFs
andMFs are different (similarities close to 0), demonstrating
that the NRGFs are more generic and noise-consistent while
MFs contain more modality-specific characteristics. On the
contrary, without using the noise-aware learning scheme, the
similarities between the NRGFs are significantly increased
(see Fig. 9a), indicating that they retain more noisy informa-
tion from different modalities.

4.7.13 Visualization of Attention Weights Learned in
Transformer

Figure 10a and b show the attention weight matrixes learned
by the Transformer for a randomly selected sample without
and with a randommask on the RML dataset, respectively. In
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Table 13 Performance comparison with the state-of-the-art method for
multi-label emotion classification, where the results in the first segment
are from the original paper, and the results in the second segment are
reproduced by the authors in the same settings. Note: w-Acc is weighted

binary classification accuracy of each category. � means the results are
independently reproduced by the authors due to the unavailability of
their original open-source code. Bold indicates the best results in each
segment

Methods Happiness Sadness Anger Suprise Disgust Fear Overall

w-Acc F1 w-Acc F1 w-Acc F1 w-Acc F1 w-Acc F1 w-Acc F1 w-Acc F1

MESM 64.10 72.30 63.00 46.60 66.80 49.30 65.70 27.20 75.60 56.40 65.80 28.90 66.80 46.80

Graph-MFN 66.30 66.30 60.40 66.90 62.60 72.80 53.70 85.50 69.10 76.60 62.20 89.90 62.35 76.33

CIA 51.90 71.30 61.80 72.90 64.70 74.70 58.20 86.00 74.10 81.80 63.90 87.80 62.88 79.08

M3ER� 62.91 62.92 55.28 70.11 58.96 73.29 56.19 83.01 67.65 80.97 52.49 85.30 58.91 75.93

Ours (NORM-TR) 60.79 60.88 57.08 70.88 58.31 73.00 51.30 86.41 70.66 80.24 50.91 87.92 58.17 76.56

Fig. 11 Visualization of successful use cases and failures. Note: The left side of the /’ represents the label/prediction for Acc-2, while the right side
of the /’ represents the label/prediction for Acc-7. The baseline model used for comparison is the standard Transformer

practice, for audio and video data, we set the pre-computed
feature vectors Ua , Uv of the mask frame to 0. Since the
NRGFs andMFs are shaped as 2T × N

2 ,where T = 8, the size
of theweightmatrix is 16×16. Each square in thematrix rep-
resents the attention weight score learned by the Transformer
between the corresponding frames of the NRGFs and MFs.
The red dashed boxes show the attention distributions of two
randomly selected frames in the matrix. Compared with the
attention weights of the unmasked frames (obtaining darker
squares in Fig. 10a), the attention weights of the masked
frames decrease significantly (obtaining lighter squares in
Fig. 10b). This indicates that the Transformer prefers to

translate the information of the frame without the mask by
extracting NRGFs as the query andMFs as the key and value,
rather than focusing on noisy frames with the mask, so that
suppress the side influence of noise information.

4.7.14 Performance Comparison for Multi-label
Classification

Since the MOSEI dataset also provides multi-label anno-
tations, we explored the performance of NORM-TR in
multi-label emotion classification. Specifically, we applied
the Sigmoid function and BCE loss function to NORM-TR
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to achievemulti-label prediction. Table 13 shows the compar-
ison results with other methods (i.e., M3ERM3ER (Mittal et
al., 2020b), MESM (Dai et al., 2021), Graph-MFN (Zadeh et
al., 2018), and CIA (Chauhan et al., 2019)). To ensure a fair
comparison, we replicated the most SOTA method, M3ER,
because of the differences in data processing methods and
experimental settings across all methods, and compared it
with NORM-TR under the same setup. Consistent with pre-
vious works (Franceschini et al., 2022; Mittal et al., 2020b),
we report weighted binary classification accuracy (w-Acc)
and weighted F1 (F1). Notably, although our approach does
not specifically focus on improvingmulti-label classification,
it still achieves very competitive performance compared to
the SOTA method in the same setting. This demonstrates the
effectiveness of NORM-TR for multi-label emotion classifi-
cation.

4.7.15 Case Visualization and Analysis

As shown in Fig. 11, we analyzed some examples from the
datasets used in our study and compared the NORM-TRwith
the baseline model (namely standard Transformer). We can
see that the NORM-TR can correctly predict most samples,
demonstrating the robustness of our approach. In addition,
it should be noticed that the example 2 and example 4 are
representative hard samples and contains conflicting/noise
information. From the example 2, we can see that the first
frame seems to express a positive emotion, while the second
and third frames seem to express a negative and neutral emo-
tion. These potential conflicts can be viewed as noise and our
model correctly predicted the sample as positive, while the
baseline model makes an incorrect prediction. This demon-
strates that the model can effectively capture the emotion
cues despite contradictory phrases. In contrast, the Sample 4
is incorrectly predicted as positive due to the strong positive
phrase “GIANT SMILE." In this case, certain video frames
showed exaggerated smiling expressions that acted as noise,
misleading both the NORM-TR and baseline model towards
a positive prediction. This indicates a potential limitation in
handling ambiguous or noisy emotional expressions, where
visual or audio noise can override the textual sentiment. In
our follow-up work (Zhang et al., 2023), we have tried to
solve this problem by using language to guide other modal
representations. Additionally, other examples show that our
method can correctly judge most samples, demonstrating the
robustness of our approach.

According to these examples,we also highlight the follow-
ing strengths of the NORM-TR model. Firstly, it effectively
integrates text, audio, andvideodata to capture complex emo-
tional cues in noisy samples due to its noise-aware learning
scheme. Secondly, it performswell in complex environments,
indicating strong real-world applicability. Lastly, the model

demonstrates high robustness in handling various emotional
expressions across different contexts.

5 Conclusion

This paper proposed a novel Noise-Resistant Multimodal
Transformer (NORM-TR) approach for multimodal emotion
recognition. The NORM-TR consists of a Noise-Resistant
Generic Feature (NRGF) extractor, a Multimodal Feature
(MF) extractor, and a multimodal fusion Transformer to
fuse NRGFs and MFs, thus significantly reducing the neg-
ative impacts of noise in the multimodal data. To this end,
a novel noise-aware learning scheme is further designed to
help optimize the NORM-TR appropriately to obtain noise-
invariant emotion representations. Extensive experiments
on several multimodal datasets, including MOSI, MOSEI,
IEMOCAP, and RML, show that our method outperforms
other approaches, demonstrating the importance of handling
noisy information as well as the effectiveness of our method.
Despite the effectiveness of our method, we found that our
method does not capture the problemof the inconsistency and
absence of emotional labels. In the future, we will introduce
more advanced semi-supervised or self-supervised learning
mechanisms into our method to learn from unlabeled data,
thus obtaining a more robust emotion understanding.
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